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ABSTRACT

Annual trends in extreme hourly precipitation time series were examined at 50 first-order weather stations

across the southeastern United States from 1960 to 2017. Results indicated that the magnitude of annual

maximum 1-, 3-, 6-, 12-, and 18-h periods did not broadly change at the sites analyzed; however, the numerical

value that defines a (station specific) 90th-percentile hourly accumulation significantly (p# 0.05) increased at

36% (18/50) of the stations. No station had a significant decreasing trend in annual 90th-percentile hourly

event magnitude. Stations in Texas observed the largest increase in annual 90th-percentile hourly event

magnitude, where parameter estimates showed increases of 0.20%–0.26%per year. Annual average dry-spell

duration, defined as the average number of hours between measurable precipitation events, significantly

decreased at 18% (9/50) of sites analyzed. Parameter estimates from regression performed on average dry-

spell-duration time series showed decreases of roughly 0.11%–0.19% per year for the stations across southern

Florida. Six stations across Georgia showed significant decreasing trends in the annual maximum consecutive

hourly period with measurable precipitation (duration), demonstrating that the longest precipitation events

that occurred at these stations have decreased in duration since 1960.

1. Introduction

Extreme precipitation events have a large societal im-

pact and appear to be increasing in many regions across

the United States (NCADAC 2013; Melillo et al. 2014;

Wuebbles et al. 2017). In recent years, heavy and extreme

precipitation events have resulted in numerous floods

across the southeastern United States (hereinafter SeUS).

For example, Charleston, South Carolina, in 2015

(683mm in 4 days); southern Louisiana in 2016 (797mm

in 2 days); Houston, Texas (Hurricane Harvey), in 2017

(.1524mm in 5 days); andElizabethtown,NorthCarolina

(Hurricane Florence), in 2018 (.889mm in 4 days). The

SeUS is prone to these type of events and has experienced

more billion-dollar disasters than any other region in the

United States since 1980 (NCADAC 2013); however,

the cost and impacts of extreme precipitation events

may become magnified in the future as a result of cli-

mate change (NCADAC 2013; Melillo et al. 2014).

Research suggests precipitation intensity, defined as the

average amount of precipitation per unit time conditional

on precipitation falling (Trenberth et al. 2003), should

increase by roughly 7% for each degree Celsius of tem-

perature increase, as shown by the Clausius–Clapeyron

relationship, because of increased atmospheric moisture

(Trenberth et al. 2003; Trenberth 2011; Wuebbles et al.

2017). Thus, as global temperatures rise, the moisture-

holding capacity of the atmosphere increases, contrib-

uting to moisture convergence (Tebaldi et al. 2006) and

providing ample moisture for storms to ‘‘empty’’ out

of a given atmospheric column (Allan and Soden 2008;

Scoccimarro et al. 2013). Heavy and extreme precipita-

tion events tend to occur as a result of high (low level)

moisture convergence (Trenberth et al. 2003) when an

atmospheric column is highly (or almost completely)

saturated. Global temperatures are projected to con-

tinue to increase in the future (Pachauri et al. 2014;

Wuebbles et al. 2017). As a result, locations around the

globe could observe increases in precipitation intensity

and extremes even if changes in mean precipitation are

negligible (Trenberth et al. 2003; Chou et al. 2009).Corresponding author: Vincent M. Brown, vbrow31@lsu.edu
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Prein et al. (2017) asserted that hourly precipitation

extremes in the contiguous United States should sig-

nificantly increase in areas with abundant moisture.

However, changes in global temperatures will also

impact circulation patterns, teleconnections, and regional

climates, which will likely dampen the direct effect

(Trenberth et al. 2003). It can also be challenging to de-

tect and attribute regional variations to global changes.

Although parts of the SeUS did not warm like other

regions in the United States during the past century

(Rogers 2013), possibly related to changes in external

forcing and variability in large-scale ocean–atmospheric

patterns (Yu et al. 2014; Meehl et al. 2015; Mascioli

et al. 2017) with a clear seasonal component (Partridge

et al. 2018), temperatures in the region have increased

by approximately 28F since the 1970s (NCADAC 2013).

Diurnal temperature ranges have also decreased broadly,

largely because of rising minimum temperatures (Powell

and Keim 2015). With scientific consensus asserting that

the global climate has and will continue to warm (see

Pachauri et al. 2014,AR5;Wuebbles et al. 2017) and given

recent observed temperature changes (seeWuebbles et al.

2017) across the SeUS, it is plausible to expect a response

in precipitation. However, detecting changes or trends in

precipitation time series can be challenging because of

inherent variability. Nonetheless, locations in the SeUS

have generally experienced more precipitation in less

time (Powell and Keim 2015), and extreme precipitation

events have become more frequent in recent decades

(Kunkel 2003; Wuebbles et al. 2017; Skeeter et al. 2019).

Numerous studies have found statistically significant

increases in the frequency or intensity of extreme pre-

cipitation (Kunkel et al. 1999; Groisman et al. 2005;

Prein et al. 2017; Skeeter et al. 2019, and many more).

While Karl et al. (1996) showed the number of days

exceeding 50.8mm (2 in.) increased in the United States

annually, Karl andKnight (1998) were among the first to

assess heavy precipitation over the contiguous United

States (Groisman et al. 2005) and found the intensity of

precipitation increased during very heavy and extreme

precipitationdays from1910 to 1995. They also showed that

the contribution of the upper 10% of precipitation events

compared to the annual sum had increased for the entire

nation as well as the percent of area affected by extreme

precipitation. Groisman et al. (2001, 2004), using their own

unique definition of very heavy events (e.g., 0.3% of daily

events), found significant long-term trends in the frequency

of very heavy precipitation within three regions (South,

Midwest, and upper Mississippi) (Groisman et al. 2005),

which include parts of the SeUS. Research by Groisman

et al. (2012) found that during the past three decades,

the frequency of intense precipitation days and events

with totals above 25.4mm (1 in.) increased, whereas the

frequency of 12.7–25.4mm(0.5–1.0 in.) days did not change.

The biggest increase found by Groisman et al. (2012)

(during the past 31 years relative to the 1948–78 period)

was in the frequency of ‘‘very heavy’’ (.76.2mm) and

‘‘extreme’’ days (.154.9mm), which increased by roughly

40% in the central United States.

Across parts of the SeUS, Skeeter et al. (2019) revealed

that annual intense precipitation events increased in both

frequency and magnitude since 1950. Powell and Keim

(2015) revealed, using a suite of indices, that the frequency

and intensity of precipitation events increased across the

SeUS. They also determined that daily intensity broadly

increased at stations across the region from 1948 to 2012.

Brown et al. (2019b), using hourly data, found a change in

precipitation characteristics across the SeUS, showing hourly

intensity increased at 44% of the sites analyzed. However,

Brown et al. (2019b) did not find a broad increase in the

annual frequency of 90th-percentile hourly events at stations

across the region (using each station’s hourly accumulation

distribution to determine the 90th-percentile value). This

suggests that changes in thehourly precipitationdistribution

are likely due tomore above-average hourly accumulations.

A majority of the research discussed above focused on

daily or multiday extremes when determining change. Daily

data are critical to our understanding of precipitation, but its

intermittent nature highlights the need to quantify other

characteristics such as frequency, intensity, and duration,

which do not operate on the daily scale (Trenberth and

Zhang 2017; Canel and Katz 2018). For example, most se-

vere and extreme storms are associatedwith short periods of

intense rainfall (Muschinski and Katz 2013; Canel and Katz

2018) that are not apparent when examining daily data.

Subdaily data that allow for the investigation of precipitation

characteristics are needed to better understand the direct

effect a changing climate may have on precipitation in the

SeUS. It is known thatdaily andmultidayheavyandextreme

events are increasing, but it is not fully knownwhether these

events are of a longer duration (more rain hours during the

day) or condensed into a few heavy hours. Unlike Brown

et al. (2019b), who explored changes in the frequency of

precipitation hours, average hourly intensity, duration of

hourly events, and changes in accumulations, this research

investigates extreme hourly precipitation characteristics at

stations across the SeUS and will focus on four questions:

1) Are there trends in 1-, 3-, 6-, 12-, and 18-h annual

maximum precipitation time series?

2) Are there changes in the numerical annual

90th-percentile hourly accumulation?

3) Are there changes in the average or maximum dry-

spell duration annually?

4) Is the length of the longest consecutive hourly period

with precipitation changing?
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2. Study region

The SeUS, defined as the 11-state region of Alabama,

Arkansas, Florida, Georgia, Louisiana, Mississippi, North

Carolina, Oklahoma, South Carolina, Tennessee, and

Texas (Fig. 1), frequently experiences extreme events

(Keim 1996; Kunkel et al. 2013a,b; Keim et al. 2018) and

is highly vulnerable to a changing climate (Powell and

Keim 2015; Carter et al. 2018). This regional delineation

was also used by Henderson and Vega (1996), Keim

(1997), Powell and Keim (2015), and Brown et al.

(2019b) and constitutes the southeastern quadrant of

the conterminous United States.

Extreme precipitation events in the region are pri-

marily caused by frontal and tropical events (Keim 1996;

Kunkel et al. 2012). During winter and spring, frontal

events induce most of the extreme events, while tropical

cyclones began to play a role in summer and autumn

(Kunkel et al. 2012). Precipitation accumulated from

tropical cyclones in a single location, during certain

events, can contribute 50%–100% of mean annual pre-

cipitation in just a few days (Simpson and Riehl 1981;

Nogueira et al. 2013). A recent example can be seen in

Houston during Hurricane Harvey. Harvey produced

5-day rainfall totals (25–29 August 2017) $1524mm

(60 in.), an amount that exceeds annual totals for many

locations across the SeUS. Another example can be seen

in the southeastern Louisiana flood of 2016. The storm

was never classified as a tropical cyclone because it

lacked a closed circulation and a well-defined center

(van der Wiel et al. 2017), but it had tropical charac-

teristics and was able to tap into record precipitable

water levels to produce 48-h rain totals$762mm across

Baton Rouge, Louisiana (Brown et al. 2020). Thus,

tropical events are important to the precipitation cli-

matology and extreme events in the region and were not

controlled for or removed.

3. Data and methods

a. Hourly data

Data for this research come from 50 first-order

weather stations (Fig. 1) maintained by the National

Centers for Environmental Information (NCEI) within

the Hourly Precipitation Database (HPD). The data-

base provides time-sequenced hourly precipitation

totals for a network of over 7000 reporting stations

primarily located in the United States (NOAA 2016).

The HPD is available on a station-by-station basis and

returns all hours with recorded precipitation, includ-

ing traces, in local standard time. Hourly trace values

represent a wet gauge but nomeasurable precipitation

and were assigned zero accumulation in this study.

To assess the quality and reliability of hourly data in

the HPD, hourly accumulation observations for each

station were summed by year to attain an annual total.

These annual hourly totals were compared to daily

precipitation totals from the Local Climatological Data

(LCD) publication maintained by the NCEI that ar-

chives some of the most reliable precipitation data

available. In most cases, precipitation totals from hourly

and daily data agree; however, they may disagree for

several reasons, including missing hourly data or under

catchment by automated hourly stations. Similar to

Brown et al. (2019a,b) this study required a continuous

FIG. 1. The 11-state region selected for this study. Blue dots represent the locations of first-

order weather stations that were used for testing temporal trends (50 total).
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time series for each station where the hourly accumu-

lation observations of each year sum to within610% of

the reported LCD annual precipitation total from daily

data. It is known that in the HPD, some stations do not

meet the 10% requirement for certain years.

To avoid sacrificing the entire station’s dataset be-

cause of a few missing observations, two other data

sources were used. First, the Midwestern Regional

Climate Center (MRCC) hourly precipitation data-

base that also reports hourly precipitation totals in

local standard time. Hourly precipitation totals from

the MRCC database are usually the same as the HPD

but sometimes (often due to different quality control

techniques) contain observations that are not present

in the HPD. The MRCC data helped add observations

to years when the HPD data did not meet the 90%

requirement; however, the Regional Climate Center

(RCC) data are very similar to the HPD. Often if data

are missing in the HPD, they are also missing in the

RCC data.

Toattain the 90%threshold, a second supplementary data

source was used. This source is the Iowa Environmental

Mesonet (IEM) raw METAR data. Hourly precipitation

totals from METAR are reported at varying times,

often at 53min past the hour and can also contain other

special observations that can lead to differing hourly

totals during precipitation hours without careful analy-

sis. In some cases, especially during heavy rainfall, the

hourly reported IEM data differed from both MRCC

and HPD data by a few millimeters. Differing totals

between the NCEI LCD and summed hourly data can

often be attributed to a few individual months, or just a

few days within a given year (i.e., a severe weather event

or maintenance). Therefore, individual months or days

where HPD or MRCC data are missing or lacking were

replaced with IEM METAR data. This process was

performed manually on a station-by-station basis by

identifying periods (first months then individual days)

where the HPD or MRCC hourly data differed from

the LCD daily reports. The IEM data were only im-

plemented in years where the annual precipitation totals

from the other hourly sources failed to reach the 90%

threshold compared to annual totals based on daily data.

Within each of the years that failed the 90% require-

ment, the IEM data were only substituted in the specific

month(s) where totals from the hourly data were below

90% of the totals from daily data. For example, if the

December 1990 LCD from daily data recorded 254mm

(10 in.) of precipitation, but the December HPD hourly

data only summed to 203.2mm (8 in.) (80%), then the

day(s) in which the missing totals occurred would be

replaced with IEM data. This was easily identifiable

using the LCD daily reports.

The automated nature and differing time collection

method in the IEM introduce potential biases (i.e., sys-

tematic errors, tipping-bucket issues, undercatchment,

etc.) but enable the construction of continuous hourly

precipitation time series where all years at each station

captured $90% of the edited annual LCD report daily

totals. It is also important to note a majority of the years

at each station using the HPD alone contained$95% of

the annual precipitation total, adding confidence to the

main data source used.

b. Limitations of data

The periodic relocation of gauged stations can in-

duce discontinuities in precipitation time series that

may limit the ability to detected changes in the hy-

drologic cycle (Groisman and Legates 1994). When a

station is relocated its proximity to buildings, vege-

tation, or elevation likely change, which alters the

wind flow characteristics and affects gauge catchment

(Eischeid et al. 1991). Keim et al. (2003) examined

the influence of relocation bias on aggregated tem-

perature measurements and asserted that it is likely

these biases also exist in precipitation time series.

Gauged precipitation measurements also tend to un-

derestimate ‘‘true’’ precipitation because of wetting

loss on the inside walls of the gauge and wind turbu-

lence at the gauge orifice (Groisman and Legates 1994).

As wind speed increases, the catch of gauges tends to

decrease (Legates and DeLiberty 1993). Legates and

DeLiberty (1993) estimated the average bias in gauge

measurements across the United States is roughly 9%,

with higher biases found in locations at high elevations

due to less friction (higher wind speeds); however,

Legates and DeLiberty (1993) determined stations

across the SeUS have lower average biases (,8%)

relative to other regions.

It is important to keep in mind the strict quality con-

trol standards maintained by the National Weather

Service (NWS). The NWS requires that stations not be

moved more than roughly 8 km (5 mi.) or change ele-

vation 630.5m (100 ft.) to be considered compatible

with the original station location (NOAA 2012). This

ensures precipitation measurements are as reliable and

consistent as possible even after relocation. Concerns

regarding the precision and accuracy of gauge mea-

surements are an issue in any precipitation analysis, and,

while no dataset is perfect, the HPD is considered to be

one of the more reliable sources of hourly precipitation

(Brooks and Stensrud 2000).

A final limitation of this research is the number of

stations used. The 11-state region covers roughly

2 066 712 km2 (797 962mi2). If the 50 stations were

equally spaced, there would be one station for every
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41 334 km2 (15 959mi2)—one obvious limitation of

this analysis. The dataset was selected because of its

robust and reliable temporal record of hourly pre-

cipitation, but the selection comes at the cost of

spatial resolution. The sparseness of stations limits

the impact of the results and results should not be

extrapolated across space. The data used represent

the ground truth of precipitation characteristics at

individual stations that could potentially be highly

localized; however, correlations between the stations

and adjacent areas are likely high, especially over the

58-yr time series.

c. Creation of time series

Precipitation time series were created for each station

using data from the HPD and the supplemental sources

from 1960 to 2017 (58 years). First, five series that rep-

resent the greatest 1-, 3-, 6-, 12-, and 18-h precipitation

accumulation period per calendar year were created.

To determine the maximum accumulation during each

period, a script was written in the R programming soft-

ware that locates and sums the greatest consecutive

hourly period of precipitation. For example, the 12-h

annual maximum series represents the single greatest

(accumulated) 12-h period with precipitation in each

year for each station. The script uses a sliding window

approach and moves through each hourly observation

(in each year) and locates, via summing, the greatest

window or period of precipitation. One limitation of this

approach is that a few extreme hourly totals can domi-

nate the period within a year. For example, if 101.6mm

(4 in.) is accumulated in 1 h, it is likely the 2- and 3-h

maximum values are close to this value and it is even

possible this single hour could be present in the 6-,12-, or

18-h annual maximum period. It is also important to

note that all hours in the maximum period were not

required to contain precipitation (i.e., a few heavy hours

can dominate the total). Nonetheless, these annual

values represent the greatest periods of precipitation

each year and should be analyzed to determine if they

are changing.

The frequency distribution of hourly precipitation

(totals) is similar to a Poisson or left-skewed distribu-

tion, with the highest frequency located at the far left of

the distribution or 0.254mm (0.01 in.) and decreasing

as magnitude increases (see Brown et al. 2019b, their

Fig. 3). For example, using all hourly observations

(1960–2017) with precipitation (.0.254mm) the aver-

age hourly accumulation at Baton Rouge is 3.3mm

(0.13 in.), while the 90th-percentile value is 8.38mm

(0.33 in.) (Brown et al. 2019a,b). To determine the

annual 90th-percentile value for each station, for each

year, another script was written in R. This script takes

all of the annual precipitation observations (accumu-

lation; not including zeros) and locates, for each year,

the numerical value at which 90% of the amounts (mm)

are below and 10% are above. The 90th-percentile

values for each year are then recorded, creating the

time series.

Annual time series were also created for average and

maximum dry-spell durations. Dry spells are of interest

because they impact agriculture via irrigation scheduling

(Usman and Reason 2004), increase air temperatures

(Powell and Keim 2015), and are more frequent than

droughts (Trepanier et al. 2015). Trepanier et al. (2015)

examined daily average annual and maximum dry-spell

series for the south-central United States from 1950 to

2013. They found that 25% of the stations in the region

had significant negative trends; indicating daily dry-spell

durations were decreasing during the study period. The

most significant reduction in annual average dry-spell

duration was found across southern Louisiana.

Robinson and Henderson (1992) discussed how the

length of dry periods between precipitation events is not

self-evident; however, synoptic analysis by Thorp and

Scott (1982) suggested that there is no single correct

value to separate events, but for climatological and hy-

drological uses a single consistent separation interval (or

1 h) is desirable (Robinson and Henderson 1992). In this

research, if measurable precipitation was recorded, it

was labeled a precipitation event, and the length of the

event depended on how many consecutive hours had

measurable precipitation. Conversely, in each year, for

each station, the average dry-spell duration was calcu-

lated by summing the number of hours between each

precipitation event, and dividing by the number of in-

dividual dry periods; where a dry period is any hour

without measurable precipitation.

Annual maximum dry-spell-duration series were also

created for each station by finding the longest (consec-

utive) hourly dry period within each year. This was

easily identifiable using the created dry-spell-duration

series. Conversely, the annual maximum precipitation

period was constructed for each station in each year by

identifying and summing the longest run of consecutive

hours with measurable precipitation (.0.254mm or

0.01 in.). These three series were used to identify the

longest periods with and without precipitation, the av-

erage duration between events, and to detect changes in

these quantities.

d. Testing for trends

To test for trends in the created time series two sta-

tistical techniques were used. First, the nonparametric

Mann–Kendall test for monotonic trends (Mann 1945;

Kendall 1948) that uses the correlation between the rank

MARCH 2020 BROWN ET AL . 431

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:15 PM UTC



order of values and their order through time to deter-

mine if the data are independent and thus randomly

ordered (Hamed and Rao 1998). The Mann–Kendall

was used to test for trends in the annual maximum series

(hourly maximum accumulations, maximum dry spell,

and maximum precipitation period) because the distri-

butions of each are unspecified and normality (on the

residuals) was rejected in many cases, which greatly af-

fects other techniques such as regression (Montgomery

and Peck 1982).While nonparametric tests are often less

powerful compared to parametric tests, in this setting,

the Mann–Kendall is a good fit and provides sound re-

sults on trends in the annual maximum series.

To test for trends in the annual 90th-percentile and

average hourly dry-spell-duration series, ordinary least

squares regression was used. Regression is widely used

in precipitation research (Groisman et al. 2012; Skeeter

et al. 2019; Brown et al. 2019a, etc.) and provides pa-

rameter estimates that provide insight on how variables

changed during a period when the independent variable

is time (year). These time series have less variability and

fewer outliers relative to annual maximum series dis-

cussed above, making them better suited for regression.

One assumption of regression is normality in the resid-

uals (Montgomery and Peck 1982). To test for normal-

ity, the Shapiro–Wilk test (Shapiro and Wilk 1965) was

used. Results from the Shapiro–Wilk test revealed

some stations had residuals that were not normally

distributed (exhibited p values , 0.05), but small

deviations from normality do not largely affect the

regression model, as it is robust when errors in nor-

mality are present (Montgomery and Peck 1982).

Nonetheless, the logarithm of the dependent variable

was taken on both the annual 90th-percentile and

average hourly dry-spell-duration series, creating an

exponential model (curvilinear regression) that aids

in removing nonhomogeneity and helps satisfy nor-

mality (Freund et al. 2010); however, this limits the

direct interpretation of the parameter estimates, be-

cause the model is no longer linear and now has

the form

log(90th-percentile values)5 b
0
1b

1
(year) .

To interpret parameters, or change in the dependent

variable per one unit change in the independent variable

(year), the parameter estimate must be exponentiated,

subtracted by 1, and then multiplied by 100. This pro-

vides the percent change in y per one unit change in x

(year). This process looks as follows:

(eb1 2 1)3 100

5 percent change in y per one unit change in x ,

where b1 is the parameter estimate from the regression.

Parameter estimates for 90th-percentile values and av-

erage dry-spell duration and can be seen for each station

in Table 1. When the term statistically significant is used,

it refers to results significant at significance level p# 0.05.

4. Results

a. Annual maximum hourly periods

Only eight different stations showed significant trends

in the five different annual hourly accumulation maxi-

mum time series. Three stations had statistically sig-

nificant (defined as p # 0.05) increasing trends in the

1-h maximum period, while another four stations had

increasing trends significant at the 0.05# p# 0.10 level

(Fig. 2a). No station had a significant decreasing trend

in the 1-h maximum period. Only two and three sta-

tions had significant trends (both increasing) in the

3- and 6-h maximum periods, respectively, with no

coherent spatial pattern (Figs. 2b,c). There were no

stations with a significant decreasing trend in the 3- or

6-h maximum period. The 12- and 18-h maximum pe-

riods yielded similar results (Figs. 2d,e), where only

four and three stations showed statistically signifi-

cant (increasing) trends (p # 0.05), respectively. The

only station times series with a significant decreasing

trend was Victoria, Texas, in the 12-h maximum

period. With a p value threshold of 0.05, it was antici-

pated, by chance alone, that roughly 2.5 station time

series would be statistically significant in each of the

five hourly periods. The results showed, across all

five hourly periods, 15 significant tests out of 250 (12.5

expected of 250, a priori) at the p # 0.05 level and 16

significant tests out of 250 (12.5 expected of 250, a

priori) at the 0.05 # p # 0.10 level. While the count of

significant results does not largely differ from what was

anticipated a prior, the significant trends were over-

whelmingly (28/31) increasing or positive through time.

Time series with the most pronounced trends in the

annual maximum 1-h (Fig. 3a; KMOB), 3-h (Fig. 3b;

KDRU), 6-h (Fig. 3c; KATL), 12-h (Fig. 3d; KATL),

and 18-h periods (Fig. 3e; KSJT) show steady increases

in magnitude since roughly 1985 (with high variability).

b. Numerical 90th-percentile value

Regression results showed the numerical value of

annual hourly 90th-percentile events significantly in-

creased at 36% (18/50) of the stations, while another

three stations had increasing trends significant at the

0.05# p# 0.10 level (Fig. 4a). No station had a statistically

significant decreasing trend in the annual 90th-percentile

event magnitude. Some of the largest percentage changes
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TABLE 1. Parameter estimates and change (in percent per year since 1960) for regressions performed on 90th-percentile values and

average dry-spell duration for 1960–2017. A single asterisk corresponds to p values significant at the 0.10 level, the presence of two

asterisks denotes significance at the 0.05 level, and the presence of three asterisks denotes significance at the 0.01 level. Only parameter

estimate values were assigned significance.

90th percentile Dry-spell duration

Station State Parameter estimate Change (%) Parameter estimate Change (%)

HSV AL 0.0002 0.0152 20.0004 20.0432

MGM AL 0.001** 0.1001 0 20.0017

MOB AL 0.0013** 0.1281 0.0001 0.0097

FSM AR 0.0014** 0.1391 20.0009* 20.0923

LIT AR 0.0006 0.0585 20.0007 20.0704

DAB FL 0.0011* 0.1071 20.0005 20.0511

JAX FL 0.001** 0.1011 0.0011** 0.1111

KEY FL 0.0004 0.0438 0 20.0009

MIA FL 0.0007 0.0732 20.0019*** 20.1898

PBI FL 20.0006 20.0582 20.0012*** 20.1239

TLH FL 20.0006 20.0608 20.0003 20.0252

TPA FL 0.0011* 0.1101 20.001*** 20.1039

AGS GA 0.0006 0.0583 20.0001 20.006

AHN GA 0.0001 0.0102 20.0004 20.0423

ATL GA 0.0003 0.0337 0 20.0016

CSG GA 0.0001 0.0116 20.0006 20.058

MCN GA 0.0017*** 0.1651 0.0005 0.0457

SAV GA 0.0008 0.0781 0.0011** 0.1131

BTR LA 0.0011** 0.1141 20.0014*** 20.1379

LCH LA 0.0008** 0.0753 20.0022*** 20.2158

MSY LA 0.0012** 0.1161 20.0006 20.0621

SHV LA 0.0012** 0.1231 20.0007 20.0709

JAN MS 0.0009 0.0916 20.0007 20.0714

MEI MS 0.0001 0.0106 20.0026*** 20.2557

CLT NC 0.0011** 0.1061 20.0006 20.0627

GSO NC 0.0005 0.05 20.0007 20.0729

HSE NC 0.0005 0.0464 20.0015*** 20.1509

ILM NC 0.0008 0.0832 20.0008* 20.0761

RDU NC 0.0013** 0.1271 20.0013*** 20.1259

OKC OK 0.0015** 0.1521 0.0002 0.0216

TUL OK 0.0003 0.0314 20.0011* 20.1089

CAE SC 0.0003 0.0252 20.0002 20.0244

CHS SC 0.0012** 0.1161 0.0001 0.0125

GSP SC 0.0005 0.05 20.0003 20.0308

BNA TN 0.0008* 0.0828 20.0012*** 20.1169

CHA TN 0.0007 0.0694 0 0.0045

TYS TN 0.0009** 0.0864 0.0001 0.0054

ABI TX 0.0011 0.1081 20.0001 20.0092

ACT TX 0.0024*** 0.2413 20.001 20.1009

AMA TX 0.0005 0.0542 20.0004 20.0413

ATT TX 0.0011 0.1051 20.0005 20.0482

BRO TX 0.001 0.0957 20.0002 20.016

CRP TX 0.0015** 0.1471 0.0008 0.0808

ELP TX 0.0026*** 0.2563 20.0007 20.0723

LBB TX 20.0003 20.0331 0.0002 0.0181

MAF TX 0.0007 0.0697 0.0014 0.1401

SAT TX 0.001 0.1011 0.0003 0.0348

SJT TX 0.002*** 0.2042 20.0002 20.0188

SPS TX 20.0002 20.0165 20.0009 20.0862

VCT TX 0.0005 0.0493 20.0014* 20.1419
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were in Texas, where parameter estimates showed in-

creases between 0.20% and 0.26% per year. The single

largest increase in the annual 90th-percentile value was

0.26% at KELP (El Paso, Texas). The time series (Fig. 5)

showed little variability in the first three decades, followed

by a large increase in magnitude and variability. All four

stations in Louisiana had statistically significant increasing

trends aswell,with parameter estimates showing increases of

0.08%–0.13% per year. However, the overall spatial pattern

is somewhat weak across the SeUS but consistent with pre-

vious studies that found a broad increase in intensity across

the region (Powell and Keim 2015; Brown et al. 2019b).

c. Average and maximum dry spell duration

Twenty-two percent (11/50) of the sites analyzed

had statistically significant trends (9 decreasing; 2 in-

creasing) in average dry-spell duration, while another

four stations had decreasing trends significant at the

0.05 # p # 0.10 level (Fig. 4b). The spatial pattern was

somewhat consistent and showed that average dry-spell

duration decreased at stations across southern Florida

(three stations), southern Louisiana (2 stations), and

the eastern half of North Carolina (three stations).

Parameter estimates, which can be interpreted as the

average percentage change in average dry-spell duration

per year, showed decreases of 0.10%–0.20% per year

for most stations with a significant (decreasing) trend

(Table 1). Only two stations had a significant increas-

ing trend in average dry-spell duration. The most pro-

nounced increasing and decreasing trend found was at

Savannah, Georgia (KSAV), and Meridian, Mississippi

(KMEI), respectively (Fig. 6). Only one station had a

statistically significant (increasing) trend in the maximum

dry-spell duration [Fig. 7; Jacksonville, Florida (KJAX)].

The time series for KJAX is variable early in the re-

cord, but showed a steady increase since the mid-1970s.

Another two stations had trends significant (increasing)

at the 0.05 # p # 0.10 level.

d. Longest consecutive hourly period with
precipitation

Results for the longest consecutive hourly period with

precipitation were more spatially coherent compared to

the annual maximum accumulations. Four stations had

statistically significant decreasing trends and another

FIG. 2. Trends (1960–2017) in annual hourly maximum precipi-

tation for (a) 1-, (b) 3-, (c) 6-, (d) 12-, and (e) 18-h periods. Large

darker-green arrows represent increasing trends that are signifi-

cant at the p # 0.05 level; smaller lighter-green arrows represent

 
increasing trends that are significant at the 0.05 # p # 0.10 level.

Large darker-red arrows represent decreasing trends that are sig-

nificant at the p # 0.05 level; smaller red arrows represent de-

creasing trends at the 0.05 # p # 0.10 level. Black dots represent

insignificant stations.
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FIG. 3. Time series of significant increasing trends in the annual maximum (a) 1- (KMOB),

(b) 3- (KRDU), (c) 6- (KATL), (d) 12- (KATL), and (e) 18-h (KSJT) periods from 1960

to 2017.
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seven stations had decreasing trends significant at the

0.05 # p # 0.10 level (Fig. 4c). No station had an in-

creasing trend significant at the p# 0.05 or 0 0.05# p#

0.10 level. Most of these stations were located across

Georgia, revealing the duration of the longest precipi-

tation events have decreased at these stations since 1960.

The spatial congruency (related to the spatial autocor-

relation) strengthens the argument that something is

changing around this area or influencing these stations.

The longest consecutive period with measurable pre-

cipitation (not including traces) for each station (1960–

2017) can be seen in Fig. 8. The top-five highest values

FIG. 4. As in Fig. 2, but for numerical (a) 90th-percentile value, (b) average dry-spell duration,

and (c) annual maximum wet period.
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canbe seen inTable 2.The longest event occurredatKTYS,

in Knoxville, Tennessee, in January 2013. The event was

caused by a slow-moving cold front that eventually became

stationary and produced hours of unrelenting precipitation.

The extratropical cyclone event at Greenville–Spartanburg

(KGSP), SouthCarolina, inFebruary 1987wouldhavebeen

the longest event but hourly trace values occurred on the

back end of the event, reducing its overall length. It is also

interesting to note that the longest event at KJAN, in

Jackson, Mississippi, was caused by Tropical Cyclone

Isidore in 2002. Isidore weakened from a category-3

hurricane to a tropical storm at landfall but still produced

substantial rainfall across Louisiana and Mississippi.

5. Discussion

It was anticipated, with a 0.05 p-value threshold, that

roughly 12.5 station time series would have statistically

significant trends of the 250 total Mann–Kendall runs, or

2.5 station time series per each hourly maximum period

FIG. 5. Annual numerical value of 90th-percentile hourly events for KELP (El Paso) from 1960 to 2017.

FIG. 6. Time series of average annual dry-spell duration for (a) KSAV and (b) KMEI. From 1960 to 2017, KSAV

exhibited a statistically significant increasing trend and KMEI showed a statistically significant decreasing trend.
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(50 tests run for each hourly maximum period). While

there were only 15 significant Mann–Kendall trends for

the magnitude of all annual maximum hourly periods,

14 had increasing trends, but there was little spatial

congruency. This demonstrates that the magnitude of

annual maximum hourly periods (at least in the periods

and sites analyzed here) was not broadly changing but

did have a positive bias; however, the numerical value

that constitutes a 90th-percentile hourly event signifi-

cantly increased at 36% of the stations. Thus, while the

absolute heaviest hourly periods were not broadly

changing in magnitude annually (possibly related to

high variability in the series), higher-magnitude hourly

events are occurring that shift the 90th percentile of

hourly accumulations up along the distribution at

some of the sites analyzed. The spatial pattern of signifi-

cant stations with increasing 90th-percentile magnitudes

showed no coherent pattern, making attribution diffi-

cult. One potential explanation could be the Clausius–

Clapeyron equation that explains how saturation vapor

pressure increases by 7% per 18C increase in temperature.

As temperatures rise, storms are potentially providedmore

moisture that can lead to more intense events (Trenberth

2011) via enhancedmoisture convergence (Trenberth et al.

2003). The SeUS has warmed at a rate similar to the rest of

the United States since the 1960s, and the decade of the

2010s (through 2017) was warmer than any other observed

decade for the region (Carter et al. 2018). Regression and

tests for trends are sensitive to starting and ending values

(Montgomery and Peck 1982), and the warmer period at

the end of the time series could explain the observed in-

creasing trend in 90th-percentile hourly magnitude. While

it is difficult to attribute observations and trends at 50 sta-

tions across the SeUS to global patterns, it is possible the

FIG. 7. Annual maximum dry-spell-duration time series for KJAX for 1960–2017. Note the increasing trend since

the mid-1970s.

FIG. 8. Longest consecutive period (h) with measurable precipitation at each station from

1960 to 2017. The lowest value is located at El Paso (25), and the highest value is at Knoxville

(61). These durations do not include trace values.
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changes are related to a warming climate; however, more

research is needed before firm conclusions can be made.

Trend results showed the longest consecutive hourly

period with precipitation decreased at stations within

the vicinity of Georgia. Brown et al. (2019b) found that

the annual frequency of precipitation hours signifi-

cantly decreased across this same sector (centered on

Georgia). The annual decrease was attributed to sig-

nificant declines in winter (December–February) and

spring (March–May), but precipitation accumulations

only decreased in spring. The average duration of

precipitation events tends to be longest in winter for

most stations across the SeUS (Brown et al. 2019b),

largely due to frequent frontal events (Keim 1996).

This reveals a change in precipitation activity across

this area—possibly related to less frequent or faster-

moving frontal events that reduce the occurrence of

long protracted precipitation events. It is also possible

these results are related to recent droughts that im-

pacted this area (Manuel 2008; Maxwell and Soulé
2009; Gotvald and McCallum 2010).

The decreasing trends in the longest precipitation

events at the stations across Georgia could also be re-

lated to the strength, intensity, or location of the

Bermuda high, which influences moisture availability

and stability over the SeUs (Henderson and Vega

1996); the Southern Oscillation that shifts storm tracks

and moisture via subtropical jet stream (Ropelewski

and Halpert 1986); or the Pacific–North American

Oscillation that influences meridional and zonal flow

across the United States (Leathers et al. 1991) and thus

areas of upper-air divergence and cyclone steering

(Henderson and Vega 1996). Assuming the decrease in

duration of the longest precipitation events (observed

at the stations across Georgia) is not associated with

tropical events and is connected to the decreased fre-

quency of precipitation hours in winter and spring

found by Brown et al. (2019b), it is possible that one,

none, some, or all of these influences on circulation are

responsible.

For example, Henderson and Vega (1996) deter-

mined that the Bermuda high, indexed by subtracting

the standardized monthly sea level pressure at New

Orleans, Louisiana, from that at Bermuda (Stahle and

Cleaveland 1992), is significantly correlated with both

winter and spring precipitation in an area containing

Georgia. A negative Bermuda high index value indi-

cates reduced southerly moisture advection and in-

creased stability over the SeUS (Henderson and Vega

1996), thus, less frequent precipitation events. The

Bermuda high, or North Atlantic subtropical high as

outlined by Li et al. (2011), intensified and moved

westward relative to its climatological average during

June–August from 1948 to 2007. This westward ex-

pansion during summer significantly affecting precip-

itation across the SeUS, and it is possible that a similar

phenomenon is occurring during winter, impacting

moisture availability and precipitation; however, the

Bermuda high is strongest during summer, and the

changes outlined in Li et al. (2011, 2012) cannot simply

be extrapolated to winter.

The decrease is also potentially related to the ‘‘warming

hole’’ that peaks in (negative) temperature anomalies

during winter and extends into spring (precipitation

and temperature within the warming hole are signifi-

cantly correlated) (Partridge et al. 2018) and encap-

sulates Georgia. The warming hole during winter and

spring is positively or negatively correlated with the

North Atlantic Oscillation or Pacific–North American

Oscillation, respectively (Partridge et al. 2018). While

this seems like a logical cause, other stations also con-

tained within the warming hole do not show the same

decreasing trend in the longest consecutive hourly pre-

cipitation events. More research using data from a sta-

tion network with a higher density, and/or using gridded

data, is needed to identify the exact cause.

Average annual dry-spell durations were observed to be

decreasing at the sites analyzed in southernFlorida, southern

Louisiana, and parts of North Carolina. Trepanier et al.

(2015) found negative trends in the average dry-spell dura-

tions for parts of the SeUS as well, particularly across

southern Louisiana, but Trepanier et al. (2015) used

more stations within the state (Louisiana) and did not

include Florida or North Carolina. Consistent with

conclusions drawn by Trepanier et al. (2015), it is be-

lieved the reduction in hourly dry-spell duration is

related to a westward shift in the Bermuda high that

induces southerly flow and encourages instability and

TABLE 2. Top-five longest consecutive hours with measurable precipitation at first-order sites analyzed for 1960–2017.

Station State Duration Start End Cause

KTYS TN 61 13 Jan 2013 16 Jan 2013 Frontal/stationary front

KHSE NC 56 25 Nov 1962 28 Nov 1962 Extratropical cyclone

KBTR LA 52 4 Feb 1979 6 Feb 1979 Stationary front/cyclogenesis

KGSP SC 51 26 Feb 1987 28 Feb 1987 Frontal/extratropical cyclone

KJAN MS 50 24 Sep 2002 26 Sep 2002 Tropical Cyclone Isidore
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precipitation across the study region, particularly in

summer (Li et al. 2012; Powell and Keim 2015).

Nonetheless, future research will investigate the fre-

quency of dry-spell events and their seasonality to

better discern trends found at the annual level.

6. Conclusions

This research showed that the numerical value of

90th-percentile hourly events significantly increased at

36% of the stations analyzed. At the same time, no

broad changes were found in the magnitude of annual

maximum hourly accumulations in 1-, 3-, 6-, 12-, and

18-h periods. While this seems to contradict other re-

search on precipitation extremes, these conclusions fall

in line with observed changes in hourly precipitation

(Brown et al. 2019b). It is also important to note that

most of the trends found in annual maximum hourly

magnitude with p # 0.10 level, while not numerous (25

expected a priori; 31 observed), were increasing (28/31).

The longest consecutive hourly period with precipita-

tion decreased at stations centered on Georgia. The ob-

served decrease in long protracted precipitation events is

likely related to decreasing precipitation hours during

winter and spring when precipitation events across

the SeUS tend to be longest on average (Brown et al.

2019b). Precipitation hours during winter and spring

across the SeUS are influenced by the Bermuda high

(Henderson and Vega 1996), Southern Oscillation

(Ropelewski andHalpert 1986),NorthAtlanticOscillation,

and Pacific–North American Oscillation (Partridge et al.

2018), all of which could influence the duration of the

longest precipitation events annually. Future research will

investigate this phenomenon using a different dataset and

denser station network to determine how prevalent the

decrease is or if it is related to the warming hole.

Future research should continue to investigate pre-

cipitation extremes using different metrics and other

data sources. One major limitation of this research is

the coarse spatial resolution of station data that limits

the interpretation of results, especially across space.

The dataset was selected because it offered a robust

temporal record of observed hourly precipitation and

allowed for the testing of temporal trends, although

results could potentially be highly localized due to

local characteristics not accounted for. Gridded hourly

data, such as Stage IV from the National Centers for

Environmental Prediction, present a possible solution

because of their extensive spatial coverage. For ex-

ample, Stage IV data are available at the hourly level

on a 4-km Hydrologic Rainfall Analysis Project (HRAP)

grid, but reliable data do not yet exist for extended pe-

riods,making robust trend analysis difficult.Another issue

with some gridded products are the grid sizes. Coarse

grids can average out precipitation characteristics of

interest, particularly extreme events that may occur

at a small spatial scale. Regardless of dataset selected,

other methods besides testing for trends could also be

employed, for example, comparing various periods

with different air temperatures while controlling for

circulations and teleconnections. Nonetheless, research

should continue to focus efforts on subdaily precipitation

because it rarely rains all day and evenwhen it does rainfall

rates vary dramatically (Trenberth and Zhang 2017).
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